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Abstract 
Sensor data streams exhibit special characteristics such as inherent information uncertainty and inherent data sample 
correlations, both within and across streams. We introduce a new data model, called Probabili stic Stream Relational 
Algebra (PSRA), that models a sensor data stream as a set of probabili stic data samples, along with prediction strategies 
for each attributes, capturing domain knowledge of inherent data correlations. We also explicitly associate every operation 
with schedule, specifying when next data sample should be produced, to facilit ate resource management in sensor networks. 
We prove that operators in PSRA are non-blocking, thus making PSRA especially suitable for data stream processing. We 
also show that conventional relational model and existing deterministic data stream processing model can be modeled in 
PSRA.    
 

1. Introduction 
Advances in device miniaturization, wireless networking and 
embedded processing have reduced both the size and cost 
required for sensing, communicating and computing. This 
promises a future where a large number of interconnected and 
possibly collaborative sensors will  be deployed in many 
applications such as environmental monitoring, industrial 
sensing and diagnostics, battlefield monitoring and patient 
monitoring [BGS00]. Large amounts of data, in the form of 
streams are produced in such environments. These data 
streams, referred as sensor data streams, exhibit several key 
characteristics in addition to those outlined in [BBD+02]: 
 
Inherent Uncertainty 
Sensor data streams generated from sensor readings are 
discrete observations of generall y continuous physical 
phenomena. The data samples in a sensor data stream depict 
only a partial picture of the phenomena under observation. 
Thus, sensor data streams are inherently approximate 
representations of physical phenomena. Uncertainty is 
therefore inherent when applications try to query the physical 
world with only discrete sensor data streams available. In 
addition, uncertainties are also introduced during the processes 
of data collection (i.e. sensor measurement), data movement 
(i.e. communication) and data processing (i.e. computation). 
These uncertainty sources are summarized as follows: 

Data Collection: Data regarding a phenomenon are 
collected through sensor measurements. Measurement 
errors are inherent due to the limitations of sensing 
principles and sensor operation environments, such as 
stabilit y of power sources, sensor locations and sampling 
frequencies. Physical measurements usuall y come as a 
value distribution range, generall y modeled as a Gaussian 
probabilit y distribution function (p.d.f.). 
Data Movement: In sensor networks, data are moved 

through networks of communication channels. Data delay 
and data loss due to limited communication resources 
such as channel bandwidth are inherent in today’s 
communication networks [CC+03]. Even if a perfect 
measurement at a required time point is available at the 
source side (i.e. the sensor), data delay and data loss can 
introduce uncertainty at the sink side (i.e. end user side) 
because the data sample may not arrive on time or never 
arrive.  
Data Processing: Since sensor data streams are 
potentiall y unbounded in size, data processing units with 
only limited storages usuall y have to use approximate 
methods such as sliding windows or data stream sketching 
to process data [BBD+02]. Furthermore, stream data 
processing often has real-time requirements, with only a 
milit ed time available to process each sample. Thus, the 
limitation of computing resources can also introduce 
uncertainties in the results.     

 
Inherent Intra- and inter- stream correlations  
Data samples in a sensor data stream are usuall y temporal 
observations of physical phenomena. Thus, these data samples 
have inherent temporal correlations as possessed by the 
phenomena. For example, vehicle positions at time t0 and t1 
are correlated through the vehicle velocity and the time 
difference (t1- t0). Different data streams observing the same 
object from different aspects can be correlated as well . For 
example, the temperature reading stream and the pressure 
reading stream of an air chamber are correlated through the 
ideal gas law: PV = nRT, where P denotes pressure, V volume, 
T temperature, R a constant and n related to the mass of the air 
in the chamber. When the chamber is closed and volume is 
fixed, the correlation is simpli fied to P/T = constant.  
 
Energy consumption sensitive 



The small  size of sensors and highly demanding functions in 
sensing, communication and computing make energy a 
precious resource in sensor data stream processing systems. 
When sensors are networked through wireless channels, 
communication is the major energy consumer [EMS02]. Thus, 
when and how frequently data samples are transmitted plays a 
major role in prolonging the li fetime of a sensor network. 
 
Data importance is context-dependent 
In a sensor data stream, data samples have different 
importance under different computing context (i.e. everything 
that could affect performing an operation). For example, if the 
computing context is evaluation of a predicate (Temperature < 
30), temperature readings with values around 30 will  be more 
important than those far below 30 or far above 30 because the 
readings around 30 contribute more to the determination of 
state change. This example ill ustrates data value-based 
importance. Data importance also depends on other attributes 
of data streams. For example, if the computing context is to 
obtain the most accurate temperature of an object. Assume two 
temperature sensors are mounted on the same location of an 
object. The temperature readings from the temperature sensor 
with higher precision have more importance than those from 
the sensor with lower precision. Data importance plays a 
central role in load shedding when a data steam processing 
system is overloaded.  
 
Eff icient and systematic management of sensor data streams 
calls for a data model that takes into account the above special 
characteristics. In this paper we develop the Probabili stic 
Stream Relational Algebra (PSRA), a data model for sensor 
data steams, by extending the conventional relational model. 
We first extend the relational model to allow new data types 
supporting data uncertainty representations, e.g. example 
Gaussian p.d.f. Then domain knowledge of applications, 
capturing the intra- or inter- stream correlations is 
incorporated into the model. Thus, a sensor data stream is 
modeled as a series of data samples and the knowledge 
describing their correlations. The correlation model and data 
samples with support for uncertainties make up a more 
complete view of a phenomena being monitored. This new 
data stream model addresses the first two issues outlined 
above. In order to address the last two issues, every sensor 
data stream operation is associated with a schedule, specifying 
when to produce the next data sample. A predicate-based 
schedule specification is proposed, supporting specification of 
both push (e.g. event-driven) and pull  (e.g. periodic query) 
type operations. Finall y, we prove that both conventional 
relational model and deterministic data stream processing 
model are special cases of PSRA. We also ill ustrate the power 
of the model in helping resource management in sensor 
networks through clear formulation of the resource 
optimization problems for the best effort and the QoS-driven 
data stream processing modes.  
 
This paper is organized as follows. Section 2 introduces new 

concepts such as Predication Strategy to be used in PSRA and 
how basic operations (e.g. algebraic operations and predicate 
evaluation) are carried out on new data types supporting 
uncertainties. Section 3 defines the concept of PS-relation, the 
formal model of sensor data streams. The essential relational 
operators (i.e. Union, Intersection, Difference, Select, 
Projection, Cartesian Product, Join, Aggregation) over the 
PS-relation are defined in section 4. Several important 
properties of PSRA are discussed in section 5. Related work is 
discussed in section 6. We conclude this paper in Section 7.  
 
 
2. Preliminaries and Basic Definitions 
2.1 Representation of data uncertainty  
Data uncertainty management generall y falls into two 
categories: fuzzy theory-based and probabilit y theory-based. 
Since the nature of data management in sensor network 
applications is fundamentall y probabili stic [FGB02], we adopt 
a probabilit y theory-based approach. In probabilit y theory, 
uncertainty is generall y represented using a Probabilit y 
Density Function (p.d.f.), which can be either discrete or 
continuous [R95].   
Continuous P.D.F.. 
Representative continuous p.d.f.’s include exponential 
distribution, Gaussian distribution etc [R95]. Gaussian p.d.f is 
of particular interest to sensor network applications because 
measurements of physical phenomena are generall y modeled 
as Gaussian distributions [W94]. The Central Limit theorem 
reveals that a large number of random samples leads to a 
Gaussian distribution. A Gaussian pd.f. (also known as Normal 
p.d.f.), is characterized by two parameters: �  – the mean 
values and �  – the standard deviation. Formall y,  
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Discrete P.D.F. 
A Discrete p.d.f. is given by specifying the probabilit y of each 
value a random variable could assume. Well  known discrete 
p.d.f.’s include uniform distribution, binomial distribution, 
geometric distribution, and Poisson distribution [R95]. The 
discrete p.d.f. for a Boolean random variable is a special one 
whose domain contains only two values: TRUE and FALSE.  
   
2.2 Essential strategies for sensor data stream processing 
srediction strategy 
In sensor network applications, data streams are observations 
of physical phenomena. Data samples in sensor data streams 
arising either directly from sensor measurements (referred to 
as original streams) or derived (through operations) from 
original streams (referred to as derived streams) have intrinsic 
correlations. For example, a stream of temperature readings of 
a room must follow heat transfer laws, e.g. the room 
temperature change is proportional to the room heat capacity 
change, which in turn is determined by the energy the room 
received in a certain period of time [M95]. Thus, estimation of 
the temperature change in a time unit is bounded by the 



maximum energy the room could receive. Furthermore, if the 
amount of energy received by the room is known, the next 
temperature reading can be predicted (with a certain level of 
uncertainty). We refer to the correlation between data samples 
within a stream as intra-correlation. In some cases, data 
samples in stream A are correlated with data samples in stream 
B. For example, the temperature and pressure of a closed 
chamber fill ed with air (generall y treated as idea gas) are 
governed by the ideal gas law. Thus, at any time point since 
the temperature measurement can be predicted through the 
pressure measurement at the same time, and vice versa, we 
refer to this correlation as inter-correlation. Taking into 
account these correlations can significantly reduce number of 
data sample required to carry same amount of information. 
Thus modeling a sensor data stream as an ordered collection 
of data samples with timestamps is oversimpli fied. These 
intrinsic data correlations associated with a stream must be 
captured to model the stream as an integral entity. In the 
PSRA model, these data correlations are modeled as 
Prediction Strategies, formall y defined as follows. 
 
Definition 1: A stream history is a sequence of ordered pairs 
(ti, Pi) listed in ascending order of ti, where Pi is the data 
sample value at time ti. 

Definition 2: Prediction Strategy (P-strategy) 

A P-strategy is a function �� �� : (history, t) �P that outputs (or 
predicts) a value in P given a sequence history history and an 
arbitrary timestamp t.  
 
A prediction strategy is an approximation model for an 
attribute value in a sensor data stream in case sensor reading is 
not available or the sample was lost in communication when 
the attribute value at a certain time point is needed. Note that 
the range (P) of a P-strategy does not have to be the same as 
any domain in the input history (history). The above 
pressure-temperature inter-correlation example is a case of 
using attributes in other domains, possibly in other streams, 
for prediction. We also do NOT constrain the range of t to 
allow backward predictions (i.e., t does not have to be larger 
than any timestamp in history). Two trivial but important 
strategies CONST and IGNORANT are listed in Appendix A.1. 
CONST P-strategy models a constant data stream where 
attribute values do not change over time. Obviously, only a 
single tuple at any time instant is needed to perfectly represent 
the whole constant data stream. Attributes in the traditional 
relational model can be readil y modeled with this strategy. 
IGNORANT P-Strategy models the situation where no data 
correlation model is available. Thus if there is a measurement 
at time instant t, the prediction for that time instant is exactly 
the same measurement. Otherwise, IGNORANT P-Strategy 
returns the most recent available measurement value with data 
uncertainty being infinite, which renders the result completely 
unreliable. Data behaviors in deterministic stream models can 
be readily modeled with IGNORANT P-Strategy since there is 
no prediction available and estimation of the states of 
observables only comes from timely availabilit y of data. 

 
In practice, prediction strategies for sensor data streams can be 
constructed from physical model or statistical model of 
observations. The ideal gas law in the above example would 
yield a physical-law-based prediction strategy for the 
temperature stream. For general linear system models, Kalman 
Filter [K60] is an excellent tool to build an optimal observer 
combining non-perfect knowledge of system model and non 
perfect measurements. Kalman filter has been extensively 
used in many physical measurement related engineering 
applications such as aircraft tracking and navigation [BL98]. 
For example, in an aircraft tracking application, to determine 
the velocity of an aircraft, one could use a Doppler radar, or 
the velocity indications of an inertial navigation system, or the 
pitot and tatic pressure and relative wind information in the air 
data system. A Kalman filter can be built  to combine all  of this 
data and knowledge of the various systems’ dynamics to 
generate an overall  best estimate of velocity at any time [M79]. 
A particle position tracking sample problem is given in [K60]. 
Details are omitted here. When physical models are not 
available, statistical models such as those data stream 
sketching models can be used to build the prediction strategies. 
Examples include randomized sketching [AMS96], V-Optimal 
Histograms [JK+98] and wavelet-based approximation 
[CG+00] 
 
P-strategies for derived PS-relations can be constructed out of 
input ones based on the operations. How P-strategies of sensor 
data streams evolve through each PS operator is discussed in 
Section 4. When P-strategies constructed this way do not 
generate good predictions, new ones can be constructed 
through directly building statistical models.  
 
Composition strategies for probabilistic data  
The introduction of data uncertainty into the sensor data 
stream processing model makes operations much more 
complicated as all  operations now need to handle p.d.f.’s 
instead of deterministic values. This is especiall y true when it 
comes to combining multiple data sample into a new one. For 
example, observations of the same object at the same time can 
be obtained from multiple sources such as redundant sensors. 
The final estimation of the state of the object may be specified 
as the average of the individual observations. Generall y 
operations involving multiple random variables need to have 
the joint distribution function of those variables. Constructing 
the joint distribution from individual p.d.f.’s needs to consider 
the dependency of these random variables. In our framework, 
a dependency and requirement model, referred as Composition 
Strategy, is introduced to define the way multiple random 
variables are “composed”  through an operation. This model 
allows users to incorporate their domain knowledge (i.e. the 
extent to which these variables are dependent) and their 
requirements (e.g. conservative or aggressive) to a data stream 
processing system.  
 
The dependency and requirement model specifies the 



dependencies of multiple random variables and provides the 
guidance on how an operation involving multiple random 
variables should be carried out. Since Gaussian distribution is 
the most commonly used p.d.f. for measurement 
representation, we use it to show some example results in the 
dependency and requirement model. Table 1 and 2 in 
Appendix A.2 show the composition strategies for algebraic 
operations and logical operations respectively. 
 
Cleaning Strategy 
In a sensor data stream processing system, observations of the 
same observable at same time can be obtained from multiple 
sources and paths. In order to form a single consistent view of 
the observable at a given time, a user-specified strategy is 
needed to fusion the multiple observations available (either 
consistent or inconsistent) of the same attributes at the same 
time point into one estimation for that time point. A cleaning 
strategy is introduced for this purpose.  
 
Definition 3: A stream observation is an ordered pair (t, Ps), 
where Ps is a set of observed values at time point t. 

Definition 4: Cleaning Strategy (CL-strategy) 

A CL-strategy is a function C: obs �P that outputs a 
value in P by combining values in a stream observation obs.  
 
A cleaning strategy specifies the way to generate a single 
estimation of an observable at any time point, eliminating 
redundancies and inconsistencies inherent in a probabili stic 
sensor data stream processing system. Common cleaning 
strategies include: 
1. Optimistic -- picking the observation with the least 
uncertainty 
2. Average – taking the average of all  observations 
3. Conservative -- picking the observation with the most 
uncertainty. 
 
A cleaning strategy can be composed using the basic 
operations with appropriate settings on dependency and 
requirements as described above. For example, suppose a 
stream observation contains three positively correlated values 
Ps ={ N(�

1, �  1),  N(�
2, �  2), N(�

3, �  3)} , and the average 
operation is adopted as the CL-strategy. By taking the 
aggressive requirement, the resultant value becomes 

)
3

),,min(
,

3
( 321321 σσσµµµ ++

N  (referred to Table 1 in 

Appendix A.2.). 

 
2.3 Schedules 
Though the states of many physical phenomena are continuous, 
their representations and processing must be carried out on 
discrete time points. We introduce the concept of schedule to 
specify these time points required by applications, triggered by 
special events or limited by sensor capabiliti es. 

Definition 5: Schedule  

A schedule S is a list of (finite or infinite) monotonicall y 
increasing timestamps. 
 

A schedule defines the series of all  distinct time points that are 
of interest to an application or an operation, in the entire time 
history. In many sensor network applications, a schedule 
consists of an infinite number of time points. For example, 
“starting from 12:00:00 05/15/04 with a sampling frequency of 
10 minutes”  specifies a periodic schedule commonly used in 
monitoring applications.  
 
To construct a practical sensor network application, a finite 
representation of a schedule is needed. Observe that, though a 
schedule can have an infinite number of members, only a 
finite number of them are needed at any time. In most cases, 
only the next time point in a schedule is needed for a sensor or 
processing node to operate. To support both push-type and 
pull -type applications, the schedule specification must be able 
to support “event-driven”  specification and application 
requirement-driven such as periodic monitoring requirements. 
We propose a predicate-based schedule specification for this 
purpose, which is shown in Appendix A.3. 
 
3. Probabilistic Stream Relation 

(PS-relation) 
3.1 Probabilistic Stream Tuple 
Borrowing the concepts from OLAP [CD97], we distinguish 
data in sensor network applications into two categories, 
dimension data and measurement data. Dimension data 
specifies a category of information for identifying objects 
rather than measuring readings. Dimension data are commonly 
used to identify data sources and take deterministic forms (i.e. 
represented in traditional data types instead of p.d.f.’s). Sensor 
id’s, sensor types, and sensor locations are among the 
examples of dimension data. Measurement data specifies the 
attributes of the object identified by the associated dimension 
data. Temperature readings are examples of measurement data 
in a data stream generated by a temperature sensor. As 
discussed in previous sections, measurement data have 
inherent uncertainties and thus are represented generall y by 
P.D.F.s. Furthermore, domain knowledge and application 
requirements are introduced in form of prediction strategy to 
capture the temporal correlations of measurement data. Thus 
there is a need to extend the traditional definition of data type 
defining an attribute. We introduce the concept of stream 
domain to capture the extra characteristics.  

Definition 6: Probabilistic Stream Domain (PSD) 

A probabilit y stream domain (PSD) is an ordered pair (pdd, 
p-strategy), where pdd is referred to as Probabili stic Data 
Domain (PDD) whose values may be p.d.f.’s in addition to 
deterministic data types, and p-strategy is a prediction strategy 
that generate values in the domain of pdd.  
 
The pdd in a PSD specifies both the data type (e.g., Gaussian 
p.d.f.) and the data range (e.g. from 0 to 1000), which can be 
used to specify the limitation of a sensor. The p-strategy in a 



PSD captures the stream characteristic. Note that p-strategy is 
extra information for facilit ating modeling of a data stream, 
rather than a mandatory requirement on the data. In fact the 
p-strategy will  be dynamicall y updated as additional 
observations in a data stream come in.  

Definition 7: Dimensional Domain (DD) 

A DD domain is a special case of a PSD domain, where pdd 
has a deterministic data type and p-strategy is CONST 
 
A DD domain provides an approach to modeling conventional 
data domain in our probabili stic data stream framework. An 
attribute in a DD domain is always deterministic and the 
CONST prediction strategy guarantees that its value does not 
change over time. Traditional non-stream relational data are 
readily modeled using DD domain. Note that traditional 
deterministic data type can be modeled as special cases of 
probabili stic data type for the purpose of computation. For 
example, deterministic value 100 is equivalently represented 
by a Gaussian p.d.f. N(100, 0), i.e. a Gaussian distribution 
function with mean value at 100 and standard deviation being 
0. This special function is also referred to as Delta function 
[R95].    
Definition 8: A dimension attribute is an ordered pair (dim, 
dd), where dim and dd are the name and the domain of the 
attribute respectively and dd must be a DD. 
Definition 9: A measurement attribute is an ordered pair (mea, 
psd), where mea and psd are the name and the probabilit y 
stream domain of the attribute respectively and psd is a PSD. 

Definition 10: Probabilistic Stream Schema (PS-schema) 

A PS-schema is comprised of a non-empty li st of 
dimension attributes and a list of measurement attributes. 
 

A PS-schema is an ordered list of attribute name and domain 
pairs, analogous to a conventional relational schema. 
Attributes in a PS-schema are divided into two types, namely 
dimension attributes and measurement attributes. The values 
in dimension attributes are assumed to change only at some 
discrete time points and these changes are completely 
reflected on the tuples pertaining to the PS-schema. In contrast, 
values in measurement attributes may continuously change 
over time, in addition to their probabili stic nature. An 
associated prediction strategy gives hints on how measurement 
attribute values advance over time. The definition of 
PS-schema also requires that any valid PS-schema must have 
at least one dimension attribute, providing room for 
identifying streams.  
 
Note that since a P-strategy is a model facilit ating data sample 
predictions in a stream rather than a constraint on data in the 
stream, two PSDs are considered compatible if they have the 
same probabili stic data domain. Thus, two schemas are 
considered “compatible” as long as all  of their corresponding 
attributes have compatible domains. When defining operations 
in this paper, we also use “same schema” to refer to 
compatible schema. The P-strategy changes are explicitl y 

addressed. 

Definition 11: Probabilistic Stream Tuple (PS-tuple)  

A PS-tuple of a PS-schema Sch contains a list of valid 
dimension attribute values, a list of valid measurement 
attribute values as determined by Sch or NULL, and a valid 
timestamp on universal clock. 
 
A PS-tuple with NULL on all  measurement attributes is also 
called NULL PS-tuple. The reason for inventing NULL 
PS-tuple will  become clear when we introduce algebraic 
operations in the next section. In this paper NULL means 
empty or not applicable instead of unknown. 
 
3.2 Probabilistic Stream Relation (PS-relation) 
Definition 12: An object PS-tuple set O over a PS-chema Sch 
under a schedule S is a set of PS-tuples of Sch such that 
1. all  PS-tuples in O share the same values on all  

dimension attributes 
2. the timestamp of each PS-tuple in O must be in S 
3. each timestamp in S has exactly one PS-tuple in O. 
 
An object PS-tuple set records the measures of an object 
(identified by the same dimension attribute values) at various 
time points as specified by a schedule. 

Definition 13: PS-relation  

A PS-relation R over PS-schema Sch under a schedule S is the 
union of several object PS-tuple sets over Sch under S. 
 
A PS-relation is a collection (possibly infinite number) of 
object PS-tuple sets compatible with the same schema. A 
PS-relation can have multiple object PS-tuple sets, each 
representing a series of observations of an observable 
identified by a distinct set of dimension attribute values. Each 
object PS-tuple set can be viewed as a sub-stream in the main 
stream represented by a PS-relation. All  object PS-tuple sets in 
a PS-relation share the same PS-relation schedule and the 
same P-strategy for each attribute. All  sub-streams in the same 
stream thus have strong logical ties, i.e. same schema, same 
schedule and same stream characteristics. The definition of the 
PS-relation also guarantees that a PS-relation is a clean view 
of observables because no redundant tuples are allowed and no 
unresolved observations of the same observable at the same 
time are allowed. PS-relations can be generated either directly 
from sensors (direct PS-relation) or derived through operations 
(derived PS-relation). We do not distinguish between these 
two types in our proposed framework as they pose no 
differences as far as the algebra (i.e., representation and 
processing) is concerned. An example PS-relation is shown in 
Appendix A.4. 
 
3.3 Semantics of PS relation 
A PS-relation represents all  available information on the 
history of a number of observables. Each PS-tuple in the 
PS-relation represents a base fact observation of the 
observable at a particular time point With the predication 



strategies available, observation at any time can be computed 
in a PS-relation. Thus the predication strategies in a 
PS-relation allows a possibly lossy representation of a 
continuous phenomenon with discrete finite number of tuples. 
 
Equivalence of two PS-relations is no longer as simple as set 
membership testing in PSRA. Rather it is defined as 
information equivalence. For example, if R1 can be resampled 
to have same estimation qualit y (i.e. same uncertainty) at all  
time points as R2 have, R1 is information equivalent to R2. If  
estimation qualit y by R1 is same as R2 only on time points 
specified in a schedule S, R1 is information equivalent to R2 
under S. Generall y, less base fact observations are needed 
when a better prediction strategy is available to contain same 
amount of information. The concept of information 
equivalence can facilit ate resource management in sensor 
networks. c. For example, given QoS requirement for a data 
stream, finding its PS-relation representation with minimum 
number of PS-tuples can reduce storage needed for the data 
stream and energy required to transmit data samples from one 
node to another 
 
4. PS Operations 
4.1 Helper operations 
Cleaning 
As mentioned in Section 2.2, cleaning functions, in the form 
of CL-strategies, are practicall y needed to remove data 
redundancies and to resolve observation inconsistencies, 
serving the purpose of constructing out of raw data a valid 
PS-relation.  

Definition 14: Cleaning 

Let T be a set of PS-tuples of the same PS-schema with a set C 
of CL-strategies, one for each measurement attribute. The 
cleaning of T using C , denoted �

C(T), is defined as follows: 
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where r.time and r.dim return the time and dimension attribute 
values of a PS-tuple r respectively, Measure(t, d, T) retrieves 
all  measure attribute values of PS-tuples in T that have the 
same timestamp t and dimension attribute d, and Clean(C, M) 
applies the CL-strategies in C on the measure attribute values 
in M. 
 
Cleaning of a PS tuple set creates a valid PS-relation with 
consistent observations and no data redundancy. The Cleaning 
operation first divides the PS tuple set T into subgroups by 
their dimension attributes values. For each subgroup (i.e. all  
tuples with same dimension attributes values), find all  tuples 
with the same timestamp and apply the CL-strategy. Thus, 
after Cleaning operation, it is guaranteed that there is one and 
only one observation (PS tuple) for each distinct time point for 
each object tuple set. The set property of no duplicate tuples is 
automaticall y guaranteed by this operation. Example is 
omitted since this operation is straightforward. 
 

Resampling 
In sensor network applications, data points generated by 
sources may not match the data consumers’ requirements, and 
thus resampling of the original streams is usuall y required. 
Semanticall y, resampling of a PS-relation generates a new 
view (specified by a new schedule) of observables from their 
current view.  

Definition 15: Resampling 

Let the PS-schema of a PS-relation R be ((dim1, dd1)… (dimm, 
ddm), (mea1, pdd1)… (mean, pddn)) and the P-strategy 
associated with i’ th measurement attribute be Pi. The 
resampling of a R under a schedule S, denoted as � S(R), is a 
PS-relation as defined below: 
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where Pi denotes the prediction strategy for the i’ th 
measurement attribute . 
historyi represents the history information passed in for 
prediction of attribute ζi. historyi may come from within R or 
from other PS-relations. 
 
Resampling of a PS-relation creates a new PS-relation with 
different tuple set, and thus a different view of the observables. 
The Resampling operation first divides the PS-tuple set R into 
subgroups by their dimension attributes values. Next, apply 
the P-strategy on values of each attribute in each subgroup (i.e. 
all tuples with the same dimension attributes values), to 
generate new values of the attribute for the subgroup at new 
time points as required in the schedule S. An ill ustrative 
resampling example is shown in Example 2 in Appendix A.4. 
 
4.2 Stream Union 
Union of two streams serves the purpose of merging two 
PS-relations with the same schema and producing a new 
PS-relation without duplicates. In applications, Union is used 
to merge observations about the same set of objects from 
different angles/paths to form a more complete view of the 
same set of objects. The resulting stream can have different 
observation time points from the input streams.  

Definition 16: Set Union 

The set union, denoted U , of two (compatible) PS-relations 
R1 and R2 is defined as  

}|{ 2121 RaRaaRR ∈∨∈=U  
The set union is very much li ke a conventional set union of the 
base tuple sets of R1 and R2. Note that the schemas of R1 and 
R2, though compatible, may have different P-strategies on 
corresponding attributes. The P-strategies in the resultant  
schema of the set union are left unspecified. Set union serves 
the purpose of defining the more general stream union.  

Definition 17: Stream Union  

The stream union of two PS-relations R1 and R2 using 
CL-strategy CCCC under schedule S, denoted as 2),C(1 RR SU , is 



defined as follows: 
1. The base tuple set in the result PS relation is given 

by 

 ))()(( 21
c2),C(1

pp
S RRRR
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ρρκ ∪=U ,where, 
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∪= ρρκ with 

P-strategies same as those in R1 

))(R)(R( 21c
2

)21()21( SSSS

pR
∪∪

∪= ρρκ  with 

P-strategies same as those in R2 

    S1 U S2 denotes a schedule with all  time points 
specified in S1, the original schedule of R1, and S2, the 
original schedule of R2 
2. The P-strategy �� ��     for any measurement attribute a in 

the resultant PS-relation is specified by the 
following: �� �� (history,t) 

return C( �� ��     
1(history,t), �� ��     

2(history,t))  
where                       �� ��  1 denotes the P-strategy for attribute a as specified in R1 �� ��  2 denotes the P-strategy for attribute a as specified in R2 
 
The stream union merges information in two PS-relations 
together. This operation is more complex than simple set union 
of all  the tuples in the two PS-relations due to certain 
information, such as data correlation knowledge, is carried in 
the p-strategy. Thus, a complete stream union takes three steps. 
First all  tuples from R1 and R2 are pooled together to form a 
larger base set, denoted as r. Then the p-strategy in R1, denoted 
as p1, and the p-strategy in R2, denoted as p2, are applied on 
the merged base set to estimate the observations at time points 
in the specified schedule. This step is done through the 
resampling operation in the above formula. After this step, two 
sets of observations at the same specified schedule points are 
generated. Finall y, a cleaning operation is employed to 
combine the multiple estimations at each time point to 
generate a single consistent estimation on the schedule, which 
forms the data set of the result stream. The new p-strategy is 
also dynamicall y selected by the CL strategy.  
 
The following subsections present the algebraic operations of 
PSRA, with examples shown in Appendix A.5.  
 
4.3 Stream Intersection 
The purpose of stream intersection of two PS-relations is to 
generate a stream with information that is verified by both 
streams. In practice, intersection can be used to find 
observations that have been verified from multiple sources and 
paths, i.e. the observations of the same object at the same time 
point from multiple sources/paths are consistent with each 
other. The consistency of multiple observations of a single 

attribute is determined by the similarity of the multiple 
observation p.d.f.’s. 
 
Definition 18: Set Intersection 
The set intersection, denoted ∩, of two PS-relations R1 and R2, 
is defined as  
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The set intersection matches up the tuples in R1 and R2 at the 
same time points. It is similar to conventional set intersection 
except for the equivalence of measurement attribute values (as 
defined by Equal()). Equal(m1, m2) is a system-defined 
predicate that determines whether the two p.d.f.’s.s m1 and m2 
are equal. For discrete p.d.f.’s , an example difference function 
is cross-entropy, or called KL-distance [KL51]. Specificall y, 
the cross entropy of m1 to m2 is defined as  

D(m1, m2)= ∑
∈

⋅
PDDx

xm

xm
xm

)(

)(
lg)(

2

1
1 ,  

where PDD is the data type of the probabilit y data domain of 
m1 and m2. Thus, the equivalence predicate Equal(m1, m2) can 
be given by: 

ε≤≡ ),(),,(max(),( 122121 mmDmmDmmEqual , 
where ε is a system-defined threshold. 

For continous p.d.f’s such as Gaussian p.d.f’s, the equalit y 
measure is replaced by a similarity function as proposed in 
[FGB02]. 
 
Definition 19: Stream Intersection  
The stream intersection of two PS-relations R1 and R2 under 
schedule S, denoted 2)(1 RR S∩ , is defined as  
1. The base tuple set in the resultant PS-relation is specified 

by the following: 
Let 

dim)}.(dim).dim.()()(:{ 21 adbaRbRadO =∧=∧∈∃∧∈∃=
 and 

)()( 21 RRR SS ρρ ∩= . Here O denotes the set of objects 
appeared in both relations and R the set of observations on 
these objects agreed in both R1 and R2. 
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2. The P-strategy�� ��     for any measurement attribute a in the 
resultant PS-relation are specified by the following: �� �� (history,t) 

if �� ��     
1(history,t) = �� ��     

2(history,t) 
 then return �� ��     

1(history,t) 
  else return NULL 

where                       �� ��  1 denotes the P-strategy for attribute a in R1, 
     �� ��  2 denotes the P-strategy for attribute a in R2, and 



  
The stream intersection operation finds the information that is 
agreed to by multiple PS-relations. A stream intersection takes 
three steps. First, all  tuples from R1 are resampled to obtain 
estimations for the operator schedule S. Then all  tuples from 
R2 are resampled to obtain estimations for the operator 
schedule S. Now, at each schedule point we have two 
estimations, from R1 and R2 respectively. If  these two 
estimations agree (based on p.d.f. equivalence when the 
attribute is probabili stic), the agreed estimation serves as the 
tuple at that time point in the result PS-relation. If  not, a 
NULL tuple is created for that time point, meaning no 
estimation is available or the uncertainty is infinite. The 
p-strategy for the result PS-relation is constructed as a 
composition of the p-strategies in the input PS-relations 
following the logic described above. 
 
4.4 Stream Difference 
The difference of two PS-relations is used to eliminate certain 
observations as described in one relation from the other. In 
practice, this operation can be used to remove from a stream 
certain observations that are later deemed inappropriate. For 
example, readings in certain range from one sensor might need 
to be removed because it is found that the sensor was wrongly 
configured for that range. As another example, civili an users 
are allowed to use GPS with precision less than what is 
required by the milit ary. Thus, certain tuples in the GPS data 
stream will  need to be removed before being fed to civili an 
applications.  

Definition 20: Set Difference 

The tuple set difference, denoted “−“ , of two PS-relations R1 
and R2, is defined as  
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The set difference matches up the tuples in R1 and R2 at the 
same time points. If  all  attribute values of a tuple in R1 agree 
with those of some timestamp-matching tuple in R2, the tuple 
in R1 is removed.    

Definition 21: Stream Difference 

The stream difference of two PS-relations R1 and R2 under 
schedule S, denoted 2)(1 RR S− , is defined as  
1. The base tuple set in the result PS-relation are specified 

by the following. 
     Let dim)}.()(:{ 1 adRadO =∧∈∃=  and 

)()( 21 RRR SS ρρ −= . Here O denotes the set of objects 
appeared in R1 and R the set of observations in R1 
diagreed by R2. 
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2. The P-strategy �� �� for any attribute a in the resultant 
PS-relation are specified by the following: �� �� (history,t) 

if �� ��     
1(history,t) = �� ��     

2(history,t) 
 then return NULL 

    else return �� ��     
1(history,t) 

where                       �� ��  1 denotes the P-strategy for attribute a in R1, 
     �� ��  2 denotes the P-strategy for attribute a in R2, and 
 
The stream difference operation removes information that is 
available in R2 from R1. A stream difference takes three steps. 
First, all  tuples from R1 are resampled to obtain estimations 
for the operator schedule S. Next, all  tuples from R2 are 
resampled to obtain estimations for the operator schedule S. 
Now, at each schedule point we have two estimations, from R1 
and R2 respectively. If  these two estimations agree (based on 
the p.d.f. equivalence when the attribute is probabili stic), the 
agreed estimation is removed by putting up a NULL tuple 
(meaning Not Applicable) for that time point in the result 
PS-relation. If  not, the estimation tuple from R1 is preserved as 
the tuple for that time point in the result PS-relation. The 
p-strategy in the result PS-relation is constructed as a 
composition of the P-strategies in the input PS-relations 
following the logic described above. 
 
4.5 Stream Select 

Definition 22: Stream Select 

The stream select of a PS-relations R over predicate pr under 
schedule S, denoted as RSpr ),(σ , is defined as follows. 

1. The base tuple set in the resultant PS-relation are 
specified by the following. 
Let dim)}.()(:{ 1 adRadO =∧∈∃= . Here O 

denotes the set of objects appeared in R. 
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2. The P-strategy �� ��     for any measurement attribute a in 
the resultant PS-relation is specified as follows: �� �� (history,t) 
if pr( �� �� x1

    (history,t), …, �� ��     
xk(history,t)) = TRUE 

 then return �� ��     
a(history,t) 

    else return NA 
where                       
  xi, 1

�
i

�
k, denote the attributes involved in evaluation of pr, 

        �� ��  xi denotes the P-strategy for attribute xi in R, and 
        �� ��  a denote the P-strategy for attribute a in R. 

 
Note that if some measurement attributes are included in the 
predicate pr, the computation of pr has to be probabili stic, 
following the basic operations described in Section 2.2. In 
addition, the result of the evaluation of pr is also probabili stic. 
For example, the evaluation of (N(µ=30,σ=2)<32) results in a 
Boolean distribution. To deal with this problem, we assume a 
user-defined threshold associated with each selection 
operation which determines the minimum TRUE probabilit y 
to satisfy the condition. For example, a 70% threshold will  



make the evaluation of (N(µ=30,σ=2)<32) TRUE, while a 
90% threshold will  result in FALSE for the evaluation of 
(N(µ=30,σ=2)<32). 
 
The stream select operation picks information that satisfies a 
specified condition. The stream select is carried out in two 
steps. First the original PS-relation R is resampled to obtain 
estimations for the operator schedule S. Then at each schedule 
point the predicate is evaluated against the estimation at that 
time point. If  the predicate evaluates to TRUE, the estimation 
is passed to the output PS-relation. Otherwise, a NULL tuple 
for that time point is passed to the output PS-relation. The 
same logic is used to construct the output P-strategies out of 
the original P-strategies in the input PS-relation. 
 
4.6 Stream Projection 
The purpose of projection of a PS-relation is to produce a new 
PS-relation with only part of the attributes in a PS-schema 
from the original PS-relation, and to remove duplicate tuples. 
Note that the observation timestamp is not part of a 
PS-schema, and thus it can not be crossed out. Also, the 
elimination of certain dimension attributes may result in 
duplicated estimations at the same time point. Thus a cleaning 
operation is needed to make the final result a valid PS-relation.   

Definition 23: Stream Projection 

The stream projection of a PS-relations R over a subset of the 

attributes specified in R’s schema: Aproj = (A1, …Ak), using 

CL-strategy C and under schedule S, denoted )(),,( R
projASCπ , 

is defined as follows: 

 
1. The base tuple set of )(),,( R

projASCLπ is given by  
)))((()( C),,( RR SAASCL projproj

ρπκπ = , 

where 
projAπ  is the conventional project operation 

without duplication elimination. 
2. The schema of )(),,( R

projASCLπ is simply the 

collection of attributes Aproj, the P-strategy of each 

measurement attribute remains the same. 

 
The stream projection is very similar to the conventional 
projection operation (i.e. only the columns of the attributes to 
be projected are preserved) except a resample operation is 
done first to match the output schedule requirement and a 
cleaning operation is done to remove duplicate observations. 
The p-strategy for each projected attribute is also preserved. 
   
4.7 Stream Cartesian Product 
Cartesian product is used to merge two PS-relations with 
possibly different schemas. The schema of the resulting 
PS-relation is a concatenation of the schemas of the two input 
PS-relations. In sensor network applications this operation can 
be used to merge different types of data streams. For example, 
the temperature readings stream and pressure readings stream 

of the same gas chamber can be merged together to form a 
complete view of the same object.  

Definition 24: Stream Cartesian Product 

The stream Cartesian product of two PS-relations R1 and R2 
under schedule S, denoted as 21 RR S× , is defined as 
following: 

1. The base tuple set of the resultant PS-relation is given 
by 
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2. The schema of 21 RR S×  contains the attributes 
coming from both R1 and R2. 

 
The stream Cartesian product takes two steps. First, the input 
PS-relations–R1 and R2, are resampled over the schedule S.  
Next, tuples with the same timestamps are paired up and 
attributes from R2 are concatenated to the attributes from R1. 
Because of the resampling step over the same schedule, each 
tuple in R2 is guaranteed to pair up with one and only one 
tuple in R1 with the same timestamp. A tuple in the Cartesian 
product of two PS-relations represents a simultaneous 
observation of all  attributes in the original input streams at a 
time point.  
 
4.8 Stream Join 
The stream join operation is defined as a composition of 
Cartesian product and select, similar to the join operation in 
conventional relational model. We take the theta join as the 
example. Equal join and natural join are its special cases.  

Definition 25: Stream Join 

The stream join of PS-relations R1 and R2 with predicate pr 
under schedule S, denoted as R1 �� �� (pr,S)R2, is defined as 
R1 �� �� (pr,S)R2 )( 2)(1),( RR SSpr ×= σ  
 
Example for stream join is omitted as it is a straightforward 
composition of Cartesian product and select 
 
4.9 Stream Aggregation 
The PS-relational model can also be extended to support 
stream aggregations. A stream aggregation, li ke an aggregation 
in conventional relational model, needs a GROUP BY 
condition.  

Definition 26: Stream Aggregation 

The stream aggregation of a PS-relations R with a set of 
grouping attributes G (specified as a set of attributes) and a set 
of aggregation functions F (one for each attribute to be 
aggregated) under the history constraint hc (a predicate 
specifying whether a tuple should participate in the 
aggregation) and a output schedule S, denoted as RSGhcF ),,,(ℑ , 
is defined as follows. 
1. The PS-schema of RSGhcF ),,,(ℑ  has two types of 

attributes: attributes contained in the group condition G  
(all  attributes in this category become dimension 
attributes in the new schema) and attributes resulted from 



aggregation functions F (all  attributes in this category 
keep their type in the new schema, i.e. dimension 
attributes are still  dimensional and measurement attributes 
are still  measurements).  

2. The base tuple set of RSGF ),,(ℑ  has one tuple for each 
time point t in S. 
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where  )}( )(|{' rhcRrrR
S

∧∈= ρ denotes the 
PS-relation resampled from R under schedule S and satisfy 
history constraint hc and F(t, R’ , g) denotes the application of 
the aggregate functions in F to the tuples in R with grouping 
attribute value being g and timestamp 

�
 t. 

 
Example 9 shown in Appendix 5 also demonstrates how 
sliding time window is implemented as a history constraint in 
PSRA. Since PSRA supports arbitrary predicates as history 
constraints, arbitrary window type can be supported. Note that 
this history constraint can also be embedded into P-strategies 
to screen out unwanted tuples since P-strategies can be 
dynamicall y changed by users. Thus other operations without 
explicit history constraint can also operate on a window of 
stream history instead of the default whole history. History 
constraint is explicitl y specified in stream aggregation only for 
the purpose of convenience without adding extra modeling 
power. 
 
5. Properties of PSRA 
 
In this section we show the modeling power of PSRA through 
the following three theorems.  
  
Theorem 1: Operators in PSRA are non- blocking 
Proof: All  operations (except Cleaning) in PSRA are applied 
on PS-relations and have an associated operation schedule. 
Because every attribute in a PS-relation has a prediction 
strategy, for any time instant t, a PS tuple with that timestamp 
can be estimated from existing base tuples and corresponding 
prediction strategies, regardless of whether any PS tuple in the 
base tuple has timestamp t. Cleaning operation, as a helper 
function, is only applied on pre-resampled data as defined in 
Stream Union and Stream Projection. Thus regardless of the 
operation schedule requirement, a result PS tuple can always 
be computed for any time instant in the schedule without 
waiting for any information. New information (PS tuples) 
injecting into input PS-relations only improve the qualit y of 
the results (e.g. less standard variations for Gaussian p.d.f.’s) 
at future observation time instants. Thus all  operators in PSRA 
are non-blocking. 
 
Theorem 2: Existing Deterministic data steam models can be 
modeled in PSRA 
Proof: Arasu et al [ABW03] has proved that the CQL data 
steam model is less expressive than Aurora, similar to the 
TelegraphCQ model and more expressive than other existing 

deterministic data stream models as discussed in Related Work. 
Thus we only need to show that CQL and Aurora models can 
be modeled in PSRA. Using Lemma 2 and Lemma 3 proved in 
Appendix A.6, we conclude that this theorem holds. 
 
 
6. Related Work 
 
Lack of directly comparable probabili stic data stream models, 
research works in deterministic data stream models and data 
uncertainty models are generall y related to this paper.  
 
Data stream models 
Studies on data stream models, in a generalized sense, can be 
traced back to materialized view maintenance [H87, SR88, 
GM95, JMS95], where updates to views are continuously 
computed based on updates to base tables on which the views 
were defined. Next, this problem was studied in the context of 
active databases, where rules are continuously evaluated 
driven by database activities [PD99]. Explicit data stream 
models were first introduced in [TG+92] and recently have 
been studied extensively [S96, CD+00, ABW, AC+03, CC+03, 
CJ+03]. The details of these models are discussed below: 
 
The Chronicle Data Model (CDM) introduced in [JMS95] 
separated the concept of relation from that of stream 
(Chronicle, in their original term). The CDM supports the 
common relational operators and aggregations with 
incremental maintenance of materialized views. The data 
model in Tapestry system [TG+92] is essentiall y relational 
models supporting time-oriented queries. In Tapestry all  data 
including stream data are stored in database and queried 
periodically and results are merged together to form the result 
stream. NiagaraCQ [CD+00] introduced intelli gent grouping 
to optimize continuous queries over large amount of XML 
documents. Data model wise, it is similar to Tapestry. 
Gigascope [CJ+03] takes a stream-only approach. Selection, 
join, aggregation and merge (similar to union) operations are 
supported over streams. Tribeca [S96] is another pure stream 
model supporting window specification and a subset of 
relational operators and aggregations in form of demux and 
mux. TelegraphCQ [CC+03] proposed a window-based 
stream-to-stream data model, where, for every instant in time, 
relational operators are applied to windows of input data 
streams, resulting in a set of tuples associated with that instant 
in time. Aurora [AC+03] proposed a procedural framework for 
data stream processing. Its data model is also stream-to-stream, 
with the following seven operators: Filter, Map, Union, Bsort, 
Aggregate, Join, Resample. 
 
CQL [ABW03] takes a similar approach to CDM in that it also 
separates the concept of relation from that of stream to take 
advantage of existing optimization techniques for traditional 
relational algebra. Streams can be converted to relations using 
windows. Relations can be converted to streams by generating 
new elements along time using Isteam, Dstream or Rstream 



operators. Operations in CQL are carried out in three steps. All  
streams are first converted to relations. Then traditional 
relational operators are applied on these relations. Finall y all  
result relations are converted back to result streams.  
 
All  existing data models discussed above treat a data stream as 
a bag of ordered tuples, either explicitl y or implicitl y, without 
consideration of inherent correlations within a stream and 
across streams. In addition, all  of these models are 
deterministic in the following senses: 

1. All  data types are deterministic. 
2. There is no formal model of data uncertainty 

incorporation and propagation. 
3. There is no built -in probabili stic query support. 

 
Data uncertainty models 
Management of data uncertainty in database systems can be 
divided into probabili stic models [BG+92] and fuzzy models 
[AR84, KF88]. However fuzzy logic is more concerned with 
compensating for the lack of expressivity in a language instead 
of directly with data uncertainty [FGB02]. Thus probabili stic 
model is more suitable of modeling uncertainties in data from 
physical world [FGB02]. 
 
Research in probabili stic data model can be traced back to the 
study of data incompleteness in databases [W82, IL84]. 
Probabili stic data model supporting discrete p.d.f.’s have been 
extensively investigated [CP87, BG+92, DS96]. Faradjian et 
al [FGB02] recently proposed a Gaussian distribution abstract 
data type supporting continuous p.d.f. Faradjian generalized 
the equalit y of two Gaussian p.d.f’s using similarity 
measurement and measure the difference of two Gaussian 
p.d.f’s with total variation distance [FGB02]. However 
mutual independency are implicitl y assumed in all  operations 
in [FGB02] as no dependency model was discussed and 
employed in [FGB02]. Lakshmanan et al first introduced 
dependency models for computing probabilit y of composite 
events [LL+97]. However their model only supports Boolean 
data type and is not first-order.  
 
The probabili stic relational algebra for temporal databases 
proposed by Dekhtyar et al. [DRS01] has been particularly 
inspiring to our work. Their algebra supports modeling and 
reasoning of uncertainty about the start time, end time and 
duration of events while keeping all  measurement values 
deterministic. In sensor data applications, we often need to 
model and reason about the uncertainty inherent in 
measurements at precise time instants as discussed in section 
1.   
 
7. Conclusions 
Sensor data streams exhibit special characteristics such as 
inherent information uncertainty, inherent data sample 
correlations within and across streams, sensiti ve energy 
consumption and context-dependent data importance. We 
introduce the Probabili stic Stream Relational Algebra (PSRA), 

a data model for sensor data steams, by extending 
conventional relational model to address these characteristics. 
Specificall y, a sensor data stream is modeled with a 
PS-relation consisting of a series of probabili stic data samples, 
capturing the inherent data uncertainties, and an associated 
prediction strategy capturing the inherent data sample 
correlations. Dependency models are introduced, in form of 
composition strategies, to support complex probabili stic 
operations. A predicate-based schedule specification is 
proposed, supporting specification of both push (e.g. 
event-driven) and pull  (e.g. periodic query) type operations, to 
explicitl y specify when to produce the next data tuple for an 
operation. With this model, memory required to store 
information of a data stream (i.e. memory required to store the 
base tuples for the stream) can be reduced when a high qualit y 
data correlation model is available. Data stream qualit y now 
can be intuitively defined by data uncertainties in desired 
schedule. Application QoS requirements can be expressed as 
data uncertainty requirements in its desired schedule. This 
requirement can then be transformed backward to guide the 
scheduling of underlying operations and even the sensors 
themselves. This schedule requirement propagation is a 
dynamic process, depending on the computing context. Thus 
PSRA provides a context-ware mechanism facilit ating energy 
management in sensor networks through operator scheduling 
feedbacks. We also prove that operators in PSRA are 
non-blocking, thus making PSRA especiall y suitable for data 
stream processing. Finall y we demonstrate the modeling 
power of PSRA by showing that conventional relational model 
and existing deterministic data stream processing models can 
be modeled in PSRA.  
 
This paper represents our initial effort in building a 
probabili stic sensor data stream processing system. Future 
work includes study of equivalences in PSRA for execution 
optimizations and construction of a prototype system. 
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Appendix 
 
A.1. Definitions of CONST and IGNORANT Prediction Strategies 
CONST Prediction Strategy: �� ��     (history, t) 

return history@.t0  
where                       
     history@.t0 denotes attribute value at time t0 (t0 <t) 
 
IGNORANT Prediction Strategy: �� ��     (history, t) 

If  there exists history@.t  
then  return history@.t  

 else return history@.t
- with infinite uncertainty 

where                       
 t

- denotes the time instant most recent to t and available in history 
 
A.2. Sample Composition Strategies 
Table 1 shows composition strategies for Gaussian p.d.f’s. Table 1 is derived from common practice in measurement 
engineering [W94]. Tables 2 shows composition strategies for Boolean random variables. Table 2 is derived from [LL+97] 
by adding conservative or aggressive constraints to maintain first order representations of probabili stic Boolean values. 
 

Table 1: Composition Strategies for Gaussian p.d.f under algebraic operations 
 + - *  / 

Conservative ( � 1, � 1) + ( � 2, �  2) = 

( � 1+ � 2, �  1+ �  2) 

( � 1, � 1) - ( � 2, �  2) = 

( � 1 - � 2, �  1+ �  2) 

( � 1, � 1) *  ( � 2, �  2) = 

( � 1* � 2, | � 2* �  1|+ |� 1* �  2|) 

( � 1, � 1) / ( � 2, �  2) = 

( � 1/ � 2, |�  1/ � 2| + |�  2/ � 1|) 

Ignorance 

 

Aggressive ( � 1, �  1) + ( � 2, �  2) = 

( � 1+ � 2, | �  1- �  2|) 

( � 1, �  1) - ( � 2, �  2) = 

( � 1 - � 2, | �  1- �  2|) 

( � 1, � 1) *  ( � 2, �  2) = 

( � 1* � 2, || � 2* �  1|-|� 1* �  2||) 

( � 1, � 1) / ( � 2, �  2) = 

( � 1/ � 2, ||�  1/ � 2| - |�  2/ � 1||) 

Conservative ( � 1, �  1) + ( � 2, �  2) = 

( � 1+ � 2, �  1+ �  2) 

( � 1, �  1) - ( � 2, �  2) = 

( � 1 - � 2, max( �  1, �  2) 

( � 1, � 1) *  ( � 2, �  2) = 

( � 1* � 2, | � 2* �  1+ � 1* �  2|) 

( � 1, � 1) / ( � 2, �  2) = 

( � 1/ � 2, |�  1/ � 2 + �  2/ � 1|) 

Positi ve 

Correlation 

Aggressive ( � 1, �  1) + ( � 2, �  2) = 

( � 1+ � 2, min( �  1, �  2)) 

( � 1, �  1) - ( � 2, �  2) = 

( � 1- � 2, | �  1- �  2|) 

( � 1, � 1) *  ( � 2, �  2) = 

( � 1* � 2, min(|� 2* �  1|, |� 1* �  2|)) 

( � 1, � 1) / ( � 2, �  2) = 

( � 1/ � 2, min(|�  1/ � 2|,|�  2/ � 1|)) 

Conservative ( � 1, �  1) + ( � 2, �  2) = 

( � 1+ � 2 ,max( �  1, �  2)) 

( � 1, �  1) - ( � 2, �  2) = 

( � 1- � 2, �  1+ �  2) 

( � 1, � 1) *  ( � 2, �  2) = 

( � 1* � 2, max(|� 2* �  1|, |� 1* �  2|)) 

( � 1, � 1) / ( � 2, �  2) = 

( � 1/ � 2, max(|�  1/ � 2|,|�  2/ � 1|)) 

Negative 

Correlation 

Aggressive ( � 1, �  1) + ( � 2, �  2) = 

( � 1+ � 2, | �  1- �  2|) 

( � 1, �  1) - ( � 2, �  2) = 

( � 1- � 2, min( �  1, �  2)) 

( � 1, � 1) *  ( � 2, �  2) = 

( � 1* � 2, | � 2* �  1- � 1* �  2|) 

( � 1, � 1) / ( � 2, �  2) = 

( � 1/ � 2, |�  1/ � 2 - �  2/ � 1|) 

Conservative Independence 

Aggressive 

( � 1, � 1) + ( � 2, �  2) = 

( � 1+ � 2, sqrt( �  1
2+ �  2

2)) 

( � 1, � 1) - ( � 2, �  2) = 

( � 1- � 2, sqrt( �  1
2+ �  2

2)) 

( � 1, � 1) *  ( � 2, �  2) = 

( � 1* � 2, sqrt(( � 2* �  1)2+ ( � 1* �  2)2)) 

( � 1, � 1) / ( � 2, �  2) = 

( � 1/ � 2, sqrt(( �  1/ � 2)2 + 

( � 1* �  2/ � 2
2)2)) 

 

Table 2: Composition Strategies for Boolean variable under logic operations1 
 Conjunction (∧) Disjunction (∨) 

Conservative(lower) max(0, p1+ p2 -1) max(p1, p2) Ignorance 

 Aggressive min(p1, p2) min(1, p1+p2) 

Conservative Positi ve 

Correlation Aggressive 

min(p1, p2) 

 

max(p1, p2) 

 

Conservative Negative 

Correlation Aggressive 

max(0, p1+ p2-1) 

 

min(1, p1+p2) 

 

Conservative Independence 

Aggressive 

p1*  p2 p1+ p2 – (p1*  p2) 

 
A.3. Predicate-based Schedule Specification (PSS)  

                                                 
1 NOT is an unary operator, thus not included in this table 



A predicate-based schedule specification, PSS, for Schedule S is a mapping of {{ pt1, … ,ptn} ,{  st1, … ,stm }} �to, where 
1. n and m are finite integers 
2. ptk (1

�
k

�
n) is a deterministic predicate. (i.e. it evaluates to either TRUE or FALSE) 

3. stk (1
�

k
�

n) is an internal state needed for predicate evaluation 
4. to is the next time point in S whenever PSS is invoked 

 
Schedules used in sensor network applications fall  into three categories: absolute, relative and value-based. Absolute 
schedule is specified directly through a series of timestamps. For example, monitor temperature readings every 5 minutes 
from 00:00:00. Relative schedule is specified as time differences to other schedules. For example, whenever a temperature 
reading is received. Value-based schedule is determined by evaluation of the predicates over certain attribute values. For 
example, report temperature when it is greater than 50 degrees. A general schedule can be a combination of these three 
types. Thus computing next time point requires continuous evaluation of the predicates for these three types of schedules.  
 
 
A.4. Illustrative Examples for PS-relations and resampling 
Example 1: Consider a PS-schema ST=(SensorId, ObjMonitored, SensorLoc, Temperature) for temperature sensors, where 
SensorId, ObjMonitored, SensorLoc are dimension attributes representing sensor id, object to be monitored, and location 
of the sensor, while Temperature is a measurement attribute. The following is an example PS-relation T over the 
PS-schema ST under a schedule S=(1, 2, 3, 5). 
SensorId ObjMonitored SensorLoc Temperature Timestamp 
S1 O0001 (20, 50) N(50, 0) 1 
S1 O0001 (20, 50) N(51, 1) 2 
S1 O0001 (20, 50) N(52, 1) 3 
S1 O0001 (20, 50) N(55, 0) 5 
S2 O0001 (30, 60) N(51, 1) 1 
S2 O0001 (30, 60) N(51, 0) 2 
S2 O0001 (30, 60) N(51, 1) 3 
S2 O0001 (30, 60) N(52, 0) 5 
There are two object PS-tuple sets in T, identified by dimension attribute values (‘S1’ , ‘O0001’ , ‘(20, 50)’) , and (‘S2’ , 
‘O0001’ , ‘(30, 60)’)  respectively. The four grey tuples belong to object PS-tuple set (‘S1’ , ‘O0001’ , ‘(20, 50)’) . The rest 
four tuples belong to object PS-tuple set  (‘S2’ , ‘O0001’ , ‘(30, 60)’) . They record the temperature readings measured by 
the two sensors in accordance with schedule S. 
 
Example 2: Consider the input PS-relation as given in Example 1. Assume that S is { 1,2,3,4,5} ,  the P-strategies for 
Temperature is: 

)(5.0
11

10.1)()(),()( −−⋅
−− ⋅+== kk tt

kkkk etttt σσµµ  � S(R) yields: 
SensorId ObjMonitored SensorLoc Temperature TS 

S1 O0001 (20, 50) N(50, 0) 1 

S1 O0001 (20, 50) N(51, 1) 2 

S1 O0001 (20, 50) N(52, 1) 3 

S1 O0001 (20, 50) N(52, 1+ e ) 4 

S1 O0001 (20, 50) N(55, 0) 5 

S2 O0001 (30, 60) N(51, 1) 1 

S2 O0001 (30, 60) N(51, 0) 2 

S2 O0001 (30, 60) N(51, 1) 3 

S2 O0001 (30, 60) N(51, 1+ e ) 4 

S2 O0001 (30, 60) N(52, 0) 5 

Note that in addition to prediction, P-strategies can be used to model sliding windows. For example, one can specify a 
P-strategy, which only returns data with timestamp in the most recent one hour (return NULL for all  other timestamps), to 
simulate a sliding time window as commonly used in other data stream models. 
 
 
 
A.5. Illustrative Examples for PSRA Operators 



 
Example 3 Consider two PS-relations T1 and T2 over the same PS-schema ST=(ObjMonitored, Temperature), where 
ObjMonitored is a dimension attribute and Temperature is a measurement attribute. In addition, the P-strategies of 
Temperature in T1 and T2 are given by 
P-strategy for T1: 

)(5.0
11

10.1)()(),()( −−⋅
−− ⋅+== kk tt

kkkk etttt σσµµ  
P-strategy for T2: 

)(5.0
11

15.0)()(),()( −−⋅
−− ⋅+== kk tt

kkkk etttt σσµµ  
where µ(tk-1) and σ(tk-1) are the mean and standard deviation of the Gaussian p.d.f. at time tk-1. 
T1 (with schedule (1, 3, 5)) 
ObjMonitored Temperature Timestamp 
O0001 N(50, 0) 1 
O0001 N(52, 1) 3 
O0001 N(55, 0) 5 
O0002 N(51, 1) 1 
O0002 N(51, 1) 3 
O0002 N(52, 0) 5 
 
T2 (with schedule (1, 2, 5)) 
ObjMonitored Temperature Timestamp 
O0001 N(50, 0) 1 
O0001 N(52, 1) 2 
O0001 N(54, 0) 5 
 
Let the CL-strategy C=Average using conservative ignorance2 and the schedule S=(1, 2, 3, 4, 5). The result PS-relation 
T1∪(C,S)T2 is given in the following table: 
ObjMonitored Temperature Timestamp 
O0001 N(50, 0) 1 
O0001 N(52, 1) 2 
O0001 N(52, 1) 3 
O0001 N(52, 1+ e75.0 ) 4 
O0001 N(54.5, 0) 5 
O0002 N(51, 1) 1 
O0002 N(51, 1+ e75.0 ) 2 
O0002 N(51, 1) 3 
O0002 N(51, 1+ e75.0 ) 4 
O0002 N(52, 0) 5 
 
And the new P-strategy on Temperature becomes 

)(5.0
11

175.0)()(),()( −−⋅
−− ⋅+== kk tt

kkkk etttt σσµµ  
 
Example 4. Consider the same PS-relations T1 and T2 as described in Example 3. Assume the p.d.f. equivalence threshold 
ε is set to be 0. The PS-relation output by T1∩C,ST2, where C=Average and the schedule S=(1, 2, 3, 4, 5), is the following: 
ObjMonitored Temperature Timestamp 
O0001 N(50, 0) 1 
O0001 NULL 2 
O0001 NULL 3 
O0001 NULL 4 
O0001 NULL 5 
 
Example 5. Consider the same PS-relations T1 and T2 as described in Example 3. Assume the p.d.f. equivalence threshold 
ε is set to be 0. The PS-relation output by T1−C,ST2, where C=Average and the schedule S=(1, 2, 3, 4, 5), is the following: 
ObjMonitored Temperature Timestamp 

                                                 

2 That is, C((�
1, � 1), (

�
2, �  2))=

2

2
,

2

2 11 σσµµ ++
. 



O0001 NULL 1 
O0001 NULL 2 
O0001 N(52, 1) 3 
O0001 N(52, 1+ e ) 4 
O0001 N(55, 0) 5 
O0002 N(51, 1) 1 
O0002 N(51, 1+ e ) 2 
O0002 N(51, 1) 3 
O0002 N(51, 1+ e ) 4 
O0002 N(52, 0) 5 
 
Example 6. Consider the same PS-relations T1 described in Example 3. The following shows the PS-relation output by 
σ(Temperature<54, S)T1, where S=(1, 2, 3, 4, 5) and the threshold assigning to minimum TRUE probabilit y of the predicate 
Temperature<54 is 80%. 
 
ObjMonitored Temperature Timestamp 
O0001 N(50, 0) 1 
O0001 N(50, e ) 2 
O0001 N(52, 1) 3 
O0001 NULL 4 
O0001 NULL 5 
O0002 N(51, 1) 1 
O0002 N(51, 1+ e ) 2 
O0002 N(51, 1) 3 
O0002 N(51, 1+ e ) 4 
O0002 N(52, 0) 5 
 
Example 7. Consider the PS-relation T shown in Example 1. Assume that the P-strategy of Temperature is given by  

)(5.0
11

10.1)()(),()( −−⋅
−− ⋅+== kk tt

kkkk etttt σσµµ . Note that in every time point in T, there are two PS-tuples with same 
value in ObjMonitored. Thus, the project of ObjMonitored and Temperature from T requires cleaning. Let the CL-strategy 
C=Average using conservative ignorance and the schedule S=(1, 2, 3, 4, 5). The PS-relation output by π C, S, (ObjMonitored, 

Temperature)T is the following: 
 
ObjMonitored Temperature Timestamp 
O0001 N(50.5, 0.5) 1 
O0001 N(51, 0.5) 2 
O0001 N(51.5,1) 3 
O0001 N(51.5, e+1 ) 4 
O0001 N(53.5, 0) 5 
 
Example 8. Consider the PS-relation T shown in Example 1 and another PS-relation P shown below: 
 
SensorId ObjMonitored Pressure Timestamp 
P1 O0001 N(100, 0) 1 
P1 O0001 N(104, 1) 2 
P1 O0001 N(107, 1) 4 
P1 O0001 N(110, 0) 5 
 
Assume that the P-strategies for Temperature in T and Pressure in P are the following: 
P-strategy for T: )(5.0

11
10.1)()(),()( −−⋅

−− ⋅+== kk tt
kkkk etttt σσµµ  

P-strategy for P: )(5.0
11

15.0)()(),()( −−⋅
−− ⋅+== kk tt

kkkk etttt σσµµ  
 
The PS-relation of T×SP, where S=(1, 2, 3, 4, 5) is the following: 
 



T.SensorId T.ObjMonitored T.SensorLoc P.SensorId P.ObjMonitored Temperature Pressure Timestamp 
S1 O0001 (20, 50) P1 O0001 N(50, 0) N(100, 0) 1 
S1 O0001 (20, 50) P1 O0001 N(51, 1) N(104, 1) 2 
S1 O0001 (20, 50) P1 O0001 N(52, 1) N(104, 

2
1

e+ ) 
3 

S1 O0001 (20, 50) P1 O0001 N(52, 
1+ e ) 

N(107, 1) 4 

S1 O0001 (20, 50) P1 O0001 N(55, 0) N(110, 0) 5 
S2 O0001 (30, 60) P1 O0001 N(51, 1) N(100, 0) 1 
S2 O0001 (30, 60) P1 O0001 N(51, 0) N(104, 1) 2 
S2 O0001 (30, 60) P1 O0001 N(51, 1) N(104, 

2
1

e+ ) 
3 

S2 O0001 (30, 60) P1 O0001 N(51, 
1+ e ) 

N(107, 1) 4 

S2 O0001 (30, 60) P1 O0001 N(52, 0) N(110, 0) 5 
 
Example 9. Assume that schedule S is { 1, 2} , Group condition is SensorId, F for temperature reading is AVG, R is given 
as follows after resampling, and independent composition strategy is adopted for example 
SensorId Temperature reading Timestamp 
Sensor01 N(50, 4)  1 
Sensor01 N(40, 2) 2 
Sensor02 N(60, 10) 1 
Sensor02 N(50, 8) 2 

a). When hc allows the entire history to participlate aggragation (i.e. hc = TRUE), RSGF ),,(ℑ  yields  

SensorId Temperature reading Timestamp 
Sensor01 N(50, 4) 1 
Sensor01 N(45, 2.24) 2 
Sensor02 N(60, 10) 1 
Sensor02 N(55, 6.4) 2 
 
b). When hc imposes a window constraint of length 1 by checking (current time – t < 1),  

RSGF ),,(ℑ  yields  

SensorId Temperature reading Timestamp 
Sensor01 N(50, 4) 1 
Sensor01 N(40, 2) 2 
Sensor02 N(60, 10) 1 
Sensor02 N(50, 8) 2 
 
A.6. Lemmas for PSRA properties 
 
Lemma 1: Traditional relational algebra (TRA) is a special case of PSRA 
Proof: The deterministic and non-stream data types generall y used in TRA can be modeled by DD domain in PSRA 
framework. All  attributes in TRA thus can be modeled as dimension attributes in PSRA. The CONST prediction strategy 
makes sure that only one tuple is needed for each dimension value for the whole history. Thus a PS-relation represents a 
traditional relation with the only extra information of the timestamp attribute. Now consider the stream operators when all  
attributes are dimensional. In this case the Cleaning and resampling operators always preserve the original relation since 
no data redundancy in original relation and all  attributes have CONST P-strategy. Consequently: 

stream union, stream intersection and stream difference are reduced to corresponding set operations 
stream select becomes predicate evaluation on each dimension value, thus on each tuple in PS-relation   
stream project becomes simple dimension attributes projection and resulting PS-relation also has only dimension 

attributes, thus a valid model of traditional relation 



stream Cartesian product becomes pairing up every possible combination of dimension attribute values from input 
relations.  

stream join has the same compositional definition as in traditional relational model. If  stream select and stream 
Cartesian product are same as in TRA, stream join must be the same as the join operator in TRA. 

stream aggregation becomes application of aggregation functions on dimensional values based on grouping 
conditions, regardless of the schedule. Result PS-relations are also all  dimensional.  
Therefore TRA is a special case of PSRA where all  attributes are modeled as dimension attributes.  
 
Lemma 2: CQL can be modeled in PSRA 
Proof: All  deterministic models process information purely upon the timely availabilit y of data. Deterministic models 
implicitl y employ a black-white data uncertainty strategy: if a measurement has been received when it is needed, the is 
zero, otherwise, data uncertainty is infinite. Thus deterministic data streams can be generall y modeled by PS-relations with 
IGNORANT prediction-strategy for all  measurement attributes. 
 
CQL [ABW03] can be considered a TRA extended with three window type operations (time-based, tuple-based and 
partitioned). Streams are first converted to relations using these window operations. TRA operators are then applied on the 
relation pool. Finall y results of continuous queries are converted back to streams from relations. The window-based 
operations are modeled by the IGNORANT P-strategy with constraints on the data available in the input parameter history. 
For example, a simple 30 minutes sliding window in CQL can be modeled as a IGNORANT P-strategy where only the 
most recent 30 minutes data (i.e. data whose timestamps > (current time - 30 min) are passed to the IGNORANT 
P-strategy as the parameter history. Thus in PSRA, window specification can be modeled as input data constraints to 
P-strategies or having this check up implemented inside the IGNORANT P-strategy. Since PSRA support arbitrary 
P-Strategy, CQL window specification can be modeled in PSRA. Lemma 1 has shown that all  TRA operators can be 
modeled in PSRA when dealing with pure non-stream relations. We conclude that CQL can be modeled in PSRA. 
 
Lemma 3: Aurora Data steam model [AC+03] can be modeled in PSRA 
Aurora [AC+03] employs procedural stream-to-stream data model with the seven operators: Filter, Map, Union, Bsort, 
Aggregate, Join, Resample. We only discuss the its data modeling power without touch on resource management related 
actions. In the following discussion, P-strategies are always assumed to be IGNORANT unless explicitl y stated. 

Filter takes one input stream and generate (m+1) output streams, where m is the number of predicates to be 
evaluated. Filter can be modeled as m stream select operations with output schedule same as input schedule.  

Map can be modeled by stream aggregation where attributes in the grouping condition include all  dimension 
attributes and the timestamp.  

Union can be readily modeled by the stream union.  
BSort can be modeled by the resampling in PSRA with a P-strategy always returning minimal value in its 

computation buffer.   
Aggregate can be modeled by the stream aggregation with the window identifying attributes set as dimension 

attributes. 
Join in Aurora is essentiall y a window-based join and can be modeled as stream join with IGNORANT 

window-constrained P-strategy as discussed in the CQL part. 
Resample can be readily modeled by the resampling operator in PSRA with P-strategy corresponding to F and 

schedule corresponding to the heartbeats. Though syntacticall y and functionall y the Aurora resample is very similar to the 
PSRA resampling, we draw the distinction that no uncertainties introduced by estimations are considered in Aurora 
resample.   
We thus conclude that data stream model in Aurora can be modeled in PSRA. 
 
 
 
 
 
 


